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APPLICATION NOTE
HiChIP

1. Introduction
The three-dimensional (3D) chromatin conformation has a profound impact 
on numerous biological processes, including but not limited to cis regulation 
of gene expression. The last decade has witnessed significant expansion of 
genome conformation mapping technologies, such as Hi-C1, a genome-wide 
sequencing-based assay designed to interrogate the 3D chromatin organiza-
tion of the genome. Despite the remarkable value of Hi-C data demonstrated 
to date in the mapping of genome structure and analysis of gene regulation 
across basic and translational research2-8, genome-wide Hi-C data is not 
always the most appropriate or cost-effective tool to address hypotheses 
pertaining to genome folding and gene regulation. To that end, HiChIP9, 
also known as PLAC-seq10, is a HiC-derived protocol that combines Hi-C with 
chromatin immunoprecipitation (ChIP) to enrich for chromatin interactions 
associated with the immunoprecipitated protein.  

Conventional ChIP analyses measure the 1D localization of chromatin 
proteins, transcription factors, or histone post-translational modifications. 
However, gene regulation occurs within the 3D space of the nucleus, and con-
ventional ChIP assays fail to examine the chromatin loops that facilitate gene 
regulation. HiChIP upgrades conventional ChIP-seq analysis by continuing 
to measure the 1D localization of chromatin proteins and by simultaneously 
identifying the long-range chromatin interactions associated with the 
enriched protein factor of interest. 

To date, HiChIP has proven to be a valuable tool to address various research 
questions. For example, H3K4me3 and K3K27ac HiChIP have been applied 
to map promoter-enhancer loops at a genome wide scale and integrated with 
disease risk variants to help prioritize novel genes related to disease patho-
genesis11-13. HiChIP has also been utilized to map the dynamics of long-range 
gene regulatory interactions in pluripotency and during differentiation6. 
More broadly, HiChIP has been used as a tool for mapping the CTCF-mediat-
ed genome folding and exploring the impact of mis-folding in cancer14, or to 
understand the structural basis of promoter-enhancer communication15.

To facilitate broad and easy access to powerful HiChIP technology, we 
developed an easy-to-use and reproducible Arima-HiChIP enabled kit that 
streamlines the HiChIP protocol via a 2-day workflow and is optimized for effi-
cient capture of chromatin looping (3D) and ChIP enrichment (1D) data. 

This application note describes the optimized Arima-HiChIP (also known 
as PLAC-seq) experimental and bioinformatics workflows (Fig.1) and 
demonstrates its ability to generate high-quality ChIP enrichment and pro-
tein-associated chromatin looping data. We demonstrate the reproducible 
discovery of ~60,000-80,000 chromatin loops associated with H3K27ac or 
H3K4me3 (Fig.2). 

We also demonstrate the high performance and ease of use of the Arima-Hi-
ChIP protocol through successful evaluation of our Arima-HiChIP kit from 
three external beta testing sites (Fig.3). Analysis of these data for key Hi-C 
and ChIP performance metrics indicates robustness across cell types and 
protein targets, reproducibility across lab environments, and the ease-of-use 
and simplicity of the protocol for first-time users. Collectively, these high per-
forming beta testing experiments lead to a significant reduction in sequenc-
ing costs compared to genome-wide HiC analyses, ranging from ~100M to 
~400M reads depending on the protein target and cell type. 

Lastly, the internal and externally generated Arima-HiChIP data enables 
the differential analysis of protein-associated chromatin loops between cell 
types, or other experimental and disease context. These differential analyses 
underscore the multiple modalities of long-range cis-regulatory chromatin 
looping events that play a role in governing gene expression, and highlight 
the unique value of adding the 3D looping context to gene regulation 
studies, where traditional 1D analysis of chromatin and transcription cannot 
reveal the full picture. 

Highlights
Proven performance 

•  Discovery of active gene regulatory interactions at high resolution

•  Demonstrated differential loop calling between sample types

Reproducible and robust 
•  Reproducible across lab environments, robust across cell types 

and protein targets

Reduced sequencing costs
•  High resolution interactions with reduced sequencing depth

Ease of use
•  2 day workflow with simple protocol for first time-users

Expanding platform
•  Potential applications with tissue and transcription factor proteins

“We were very pleased with the informative nature 
and quality of the Arima-HiChIP data. Not only 
do we observe intra-chromosomal cis-regulatory 
interactions across cancer genomes, but also in-
ter-chromosomal ectopic cis-regulatory interactions 
on rearranged chromosomes.  We think these data 
will help better delineate the relationship between 
genetic and epigenetic driver events in cancer.”
       — Peter Scacheri, PhD, Professor, Case Western University School of Medicine



2.Materials 
and Methods
2.1 Samples

The Arima-HiChIP libraries and sequencing data were evaluated on a range of 
cell types through internal experiments and a beta testing program involving 
3 leading labs studying epigenetic gene regulation. The beta testers were 
provided with an Arima-HiC+ kit (P/N: A101020), antibodies for either H3K-
27ac or H3K4me3 and other reagents required for ChIP, and ~3M crosslinked 
GM12878 Human Lymphoblastoid cells (LCLs) as control, in replicate. All beta 
testers also evaluated two of their own samples, in replicate, comprising a 
variety of cell types including hepatocellular carcinoma cells (HepG2), B-cell 
lymphoma cells (OCI-Ly7), human fetal fibroblasts (IMR90), and  IPSC-de-
rived neurons.

2.2 Arima-HiChIP Library Preparation

Arima-HiChIP is a 2-day protocol that results in proximally-ligated DNA that 
was associated with an immunoprecipitated protein of interest. This enriched 
DNA is then prepared as an Arima-HiChIP library in 1-day using a pre-vali-
dated commercially available library prep kit. After library prep, the resulting 
Arima-HiChIP libraries are sequenced in paired-end mode via Illumina next 
generation sequencers (Fig.1A). 

2.3 Bioinformatic Analysis of Arima-HiChIP data

The Arima-HiChIP libraries were evaluated, both internally and by beta tes-
ters, using numerous metrics, but with particular emphasis on the qualities 
of the long-range chromatin conformation and ChIP enrichment signals, the 
number of raw sequencing reads needed for reproducible  H3K4me3- and 
H3K27ac-associated loops across replicates, and the ease of use of the experi-
mental protocols and bioinformatics pipeline.  

To assess the initial quality of the long-range (3D) and ChIP enrichment (1D) 
signals, Arima-HiChIP libraries were sequenced to a low depth (~1M paired-
end reads). The resulting Arima-HiChIP sequencing data were then mapped 
to a reference genome using a modified version of the open-source MAPS 
pipeline (Juric et al, 2019) adapted for Arima-HiChIP data (Fig.1B; GitHub 
Link) and two types of signals were enumerated: (1) long-range cis interac-
tions that are captured from proximity ligation during the Hi-C portion of the 
overall HiChIP workflow, and (2) the fraction of reads enriched at ChIP peaks, 
produced as a result of the ChIP portion of the overall HiChIP protocol. The 
product of these two features (3D and 1D) in the HiChIP data were then used 
to determine the sequencing depth needed for each sample to obtain suffi-
cient long-range cis interactions anchored at each ChIP peak for reproducible 
chromatin looping analyses. All of the aforementioned data features and 
statistics (plus several more) are tallied in a convenient quality control table 
output by the MAPS pipeline, and can be copy/pasted into the Arima-HiChIP 
QC Worksheet for tabulation and analysis. 

For deep sequencing analysis, Arima-HiChIP data were again mapped to a 
reference genome using a modified version of the same open-source MAPS 
pipeline adapted for Arima-HiChIP data.  However, in addition to the quality 
metrics described above, the deep sequencing data allows the discovery of 
thousands of protein-associated chromatin loops at a genome-wide scale us-
ing MAPS pipeline. These QC metrics, as well as the enumeration of loops, 
are again reported in a quality control table output by the MAPS pipeline, 
and can be copy/pasted into the Arima-HiChIP QC Worksheet for tabulation 
and analysis.
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Figure 1. The Arima-HiChiP Experimental and Bioinformatics Workflows. A) The Arima-HiChIP workflow is a streamlined protocol that results in immunoprecipitated 
biotin-labeld proximally ligated DNA that was associated with the immunoprecipitated protein target. The immunoprecipitated DNA is enriched for biotin and prepared as a library 
and sequenced in paired-end mode on Illumina sequencing instruments. B) Arima-HiChIP data can be analyzed using the Arima-MAPS pipeline, producing ChIP enrichment 
metaplots and heatmaps around known ChIP peaks (if available), loop calls that can be uploaded to the WashU Epigenome Browser, and a QC table for high level and detailed 
analysis of data quality. 

Figure 1. The Arima-HiChiP Experimental and Bioinformatics Workflows. A) The Arima-HiChIP workflow is a streamlined protocol that results in immunoprecipitated 
biotin-labeld proximally ligated DNA that was associated with the immunoprecipitated protein target. The immunoprecipitated DNA is enriched for biotin and prepared as 
a library and sequenced in paired-end mode on Illumina sequencing instruments. B) Arima-HiChIP data can be analyzed using the Arima-MAPS pipeline, producing ChIP 
enrichment metaplots and heatmaps around known ChIP peaks (if available), loop calls that can be uploaded to the WashU Epigenome Browser, and a QC table for high level 
and detailed analysis of data quality.



“Enriching for active chromatin features through 
H3K27ac or H3K4me4 HiChIP enables our 
discovery of high-resolution chromatin looping 
events that facilitate gene control in muscle 
stem cells during the transition from a state of 
quiescence to their commitment toward differ-
entiation into regenerating myofibers, during 
muscle regeneration in healthy conditions, 
aging or diseases such as muscular dystrophies. 
The combined analysis of this HiChIP data with 
our genome-wide Hi-C data is pivotal to our 
understanding of both the broader compart-
mentalization and topolological frameworks 
that influence gene regulation, but also the finer 
resolution connections between specific cis-reg-
ulatory elements.”
       — Pier Lorenzo Puri, M.D., PhD, Professor, Sanford Burnham Presyb

3.Results
3.1 Reproducible discovery of active gene regulatory 
chromatin loops

To investigate the performance of Arima-HiChIP data, we generated deep 
sequencing Arima-HiChIP data from replicates of human lymphoblast cells 
(GM12878), in replicate, when enriching for H3K4me3 and H3K27ac. The 
data was analyzed using the Arima-MAPS pipeline, and we benchmarked 
the degree of ChIP enrichment in the Arima-HiChIP data compared to ChIP-
seq data generated by ENCODE on the same sample (Fig.2A). For H3K4me3 
Arima-HiChIP, we observed a ~6-fold peak to local background enrichment, 
which is consistent with the matched ChIP-seq data. Similarly, for H3K27ac 
HiChIP, we observed a ~3-fold peak to local background enrichment, consis-
tent with the matched ChIP-seq data. 

The number of raw reads required for reproducible HiChIP loops depends 
on the quality of the long-range cis interactions and ChIP enrichment 
features of the HiChIP data, and, the number of underlying 1D ChIP peaks 
that serve as the anchor points for loop discovery. The more 1D peaks, the 
more total reads are needed to provide sufficient coverage of long-range 
interactions originating from the ChIP peaks. Based on the quality features 
of the Arima-HiChIP data described above, we determined the required 
number of reads for generation of reproducible and robust HiChIP loops 
(Fig.2B). For comparison sake, plotted alongside the HiChIP data is the 
recommended number of reads for Arima-HiC data, as well as the ENCODE 
recommendation for conventional in situ HiC data. As expected, the num-
ber of reads required for H3K27ac HiChIP exceeds that of H3K4me3, driven 
by both antibody performance and more underlying 1D peaks in the case 
of H3K27ac.

To illustrate the type of 1D ChIP enrichment and 3D chromatin looping 
data obtained from Arima-HiChIP, a snapshot of the MYC locus is provided 
(Fig.2C). Plotted below the chromatin, DNA accessibility, and transcriptome 
tracks obtained from ENCODE are the 1D coverage tracks of the Arima-Hi-
ChIP data. The H3K27ac HiChIP 1D signal is nearly identical compared to 
the H3K27ac ChIP-seq signal directly above, suggesting not only the strong 
signal to noise of the ChIP enrichment in the HiChIP data, but the similar 
capture of 1D protein localization peaks compared to conventional ChIP-seq. 

Moreover, a subset of the ~75,000 H3K27ac-associated chromatin loops 
are shown at the MYC locus (Fig.2C). These loops appear to connect active 
cis-regulatory elements, as well as sites not marked by H3K27ac but rather 
occupied to CTCF, SMC3, or both. To analyze the reproducibility of H3K-
27ac-associated chromatin loops, we calculated the percentage of chromatin 
loops from one replicate that are also found in the other replicate (Fig.2D). 
We observe approximately 85% replicate reproducibility using this metric 
for H3K27ac HiChIP, and ~74-87% replicate reproducibility for H3K4me3 
HiChIP (Fig.2E). 
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Figure 2. Reproducible discovery of active gene regulatory chromatin loops. 
A) ChIP enrichment metaplots comparing Arima-HiChIP to ChIP-seq. B) Estimated 
number of raw read-pairs required for reproducible chromatin loop discovery for in 
situ Hi-C, Arima-HiC, and Arima-HiChIP. C) WashU Epigenome Browser snapshot 
of the MYC locus in human lymphoblast cells. The darker the purple arcs, the more 
stastically significant the loop. D) Chromatin looping reproducibility analysis in our 
H3K27ac Arima-HiChIP data. The pie charts depict the total number of loops from 
one replicate that were identified (marked as “common”) or not identified (marked 
as “differential”) in the other replicate. E) Chromatin looping reproducibility analysis 
in our H3K4me3 Arima-HiChIP data.



3.2 Successful evaluation of Arima-HiChIP by 3 external 
beta testing sites 

To validate the performance of Arima-HiChIP, the Arima-HiChIP workflow 
was evaluated independently by 3 beta testers (Fig.3). Using Arima-HiC+ 
kits, the beta testers consistently generated a high percentage of long-
range (>15kb) cis interactions (Mean=39% for H3K4me3; Mean=42% 
for H3K27ac) as well as an accompanying high degree of ChIP enrichment 
evidenced by a high percentage of HiChIP reads overlapping known ChIP 
peaks (Mean=80% for H3K4me3; Mean=51% for H3K27ac). Collectively, 
these data indicate the strong performance of the Arima-HiChIP protocol 
and kit, and the high-quality of the resulting Arima-HiChIP libraries (Fig.3A). 

Of note, the standard deviation in the proportion of long-range cis inter-
actions (1.3% for H3K4me3 and 2.8% for H3K27ac) and reads overlapping 
known ChIP peaks (1.4% for H3K4me3 and 3.9% for H3K27ac) was minimal 
across the 3 beta testing labs using control GM12878 cells, underscoring 
the reproducibility and robustness of the workflow across lab environments 
and user experience levels. 

Based on the quality features of the Arima-HiChIP data described above, we 
determined the required number of reads for generation of reproducible and 
robust HiChIP loops (Fig.3B). We observed a mean of 113M raw read-pairs 
required (STDEV=10M) for H3K4me3 HiChIP loop discovery and 251M 
(STDEV=52M) raw read-pairs for H3K27ac HiChIP loop discovery. Similar to 
above and as expected, we observe minimal variance in the sequencing depth 
requirements across the 3 beta testing labs using control GM12878 cells. 
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3.3 Arima-HiChIP uncovers cell-type specific chromatin 
loops associated with active promoters. 

To illustrate the utility of Arima-HiChIP data in exploring differential gene 
regulation across experimental samples, we identified a significantly 
different chromatin looping landscape associated with the active promoter of 
ITGB1BP1 (Fig.4). While this gene is expressed in both cell types as evidenced 
by the H3K4me3 peak at the promoter region and transcriptional signal 
across the gene body, the chromatin loops are largely skewed downstream 
in lymphoblasts towards a series of other active promoters (evidenced by 
H3K4me3) and putative enhancers (evidenced by H3K27ac ChIP signal but 
not H3K4me3). Strikingly, the chromatin loops are largely skewed upstream 
in IPSC-derived neurons, towards a broad range of H3K27ac signal and the 
active promoter of a neuron-specific gene, ASAP2. These interactions occur 
upstream, despite several other active promoters and putative enhancers 
downstream that are also observed in lymphoblast cells. This observation 
may be described as “enhancer-promoter switching”. One possible mecha-
nism facilitating this differential looping landscape could be the CTCF peak at 
the ITGB1BP1 gene found only in IPSC-derived neurons. 

Further analysis of chromatin loops also exemplifies two additional modali-
ties of long-range gene regulation. For example in the H3K4me3-associated 
loops anchored at ITGB1BP1, it is observed that some promoter-enhancer 
loops skip over genes, demonstrating the well-known observation that en-
hancers do not always regulate their nearest gene (REF). It is also observed 
that promoters significantly interact with other promoters. Taken together, 
the joint analysis of architectural protein occupancy, chromatin activity, 
transcription, and chromatin looping provide a more comprehensive view of 
dynamic gene regulatory mechanisms across cell types.
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Figure 4. Arima-HiChIP uncovers cell-type specific loops associated with active pro-
moters.  WashU Epigenome Browser snapshot of the ITGB1BP1 locus in human lymphoblast 
cells (top half) and IPSC-derived neurons (bottom half). Shown for each cell type is CTCF occu-
pancy, H3K27ac ChIP-seq, RNA-seq, H3K4me3 HiChIP 1D coverage, and H3K4me3 HiChIP 
loops. ChIP and RNA-seq data in lympoblasts were obtained from ENCODE, and CUT&RUN 
and RNA-seq data in IPSC-derived neurons were obtained from the Yin Shen Lab (UCSF). Of 
note, only loops anchored at the ITGB1BP1 promoter are shown and other loops not associat-
ed with ITGB1BP1 promoter region are masked for illustrative and comparative purposes. The 
darker the purple arcs, the more stastically significant the loop.  

“We have been homebrewing HiChIP because it provides 
critical insights that were previously obtained from perform-
ing separate Hi-C and ChIP-Seq experiments, Arima-HiChIP 
generated superior data quality and reproducibility even 
with our most challenging terminally differentiated neuronal 
samples, where our homebrew version previously failed, thus 
saving us from substantial repeat costs”

       — Yin Shen, PhD, Principal Investigator, UCSF

Figure 3. Successful evaluation of Arima-HiChIP by 3 external beta testing 
sites. A) Scatter plot showing the percentage of Arima-HiChIP reads representating 
long-range (>15kb) cis contacts (y-axis) and the percentage of HiChIP reads overlap-
ping known ChIP peaks. For all of these experiments, 1D peaks have previously been 
identified and enabled this form of ChIP enrichment analysis for assay benchmarking. 
Approximate cutoffs for success are illustrated with dotted lines, where successful 
libraries fall into the upper right quadrant of the scatter plot. Performance metrics for 
H3K4me3 Arima-HiChIP are colored in blue and H3K27ac Arima-HiChIP are colored in 
gray. B) Bar plot showing the number of raw read-pairs required for deep sequencing 
for each of the 24 reactions performed by the 3 beta testing sites on a variety of 
sample types. Sequencing requirements for H3K4me3 Arima-HiChIP are colored in 
blue and H3K27ac Arima-HiChIP are colored in gray.
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“We have been very pleased with the 
performance of the Arima Hi-C/HiChIP kit. It has 
improved reproducibility and overall quality 
while saving us time and sequencing cost. We 
particularly value the straightforward quality 
control steps and the ease of use. The Arima 
Technical Support Team has also been 
outstanding. Overall, a great value.”
       — Tamas Ordog, Professor, Mayo Clinic

4. Conclusions 
In summary, the Arima HiChIP protocol, available with the Arima-HiC+ 
kits, is an easy-to-use and reproducible HiChIP workflow that produces 
high quality libraries with robustness across cell types. The high quality 
data is exemplified in internal and external evaluations of the Arima-Hi-
ChIP workflow, as evidenced by the strong ChIP enrichment and efficient 
capture of long-range cis interactions, leading to significantly reduced 
sequence cost to obtain loops associated with active chromatin marks. 
These loops, when analyzed in conjunction with other chromatin and 
transcriptional datasets, provide an integrative topological view of gene 
regulatory mechanisms within the 3D nucleus and enable the discovery 
of gene regulatory mechanisms across cell types, disease states, and a 
variety of other research contexts. 

v1

ARIMA GENOMICS • 6404 Nancy Ridge Drive, San Diego, CA 92121
Office: 858.275.6463 • info@arimagenomics.com • arimagenomics.comOffice: 858.275.6463 • techsupport@arimagenomics.com • arimagenomics.com


